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SUMMARY

The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In

this simplified method, called the modal ring method, the scattering body is represented by a ring of triangular

finite elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure

in the inf'mite computational region surrounding the body is represented analytically by an eigenfunction expan-

sion. The two solution forms are coupled by the continuity of pressure and velocity on the body surface.

The modal ring method effectively reduces the two-dimensional scattering problem to a one-dimensional

problem capable of handling very high frequency scattering. In contrast to the boundary element method or the
method of moments, which perform a similar reduction in problem dimension, the modal line method has the

added advantage of having a highly banded solution matrix requiring considerably less computer storage. The
method shows excellent agreement with analytic results for scattering from rigid circular cylinders over a wide

frequency range (1 <_-ka _<- 100) in the near and far fields.

INTRODUCTION

The modal element method, which couples finite elements and eigenfunction expansions, has been em-

ployed in electromagnetic and acoustic scattering and duct transmission problems. The primary reasons for
employing this technique are (1) to describe accurately the radiation boundary condition at the computational

boundary and (2) to reduce the size of the numerical grid. This hybrid steady state method has been given
various titles, such as the unimoment method, the transfinite element method, and the modal element method.

In electromagnetics, Chang and Mei (1976) and Lee and Cendes (1987) applied the method to scattering from

dielectric cylinders while Baumeister (1991) applied the method to electromagnetic propagation in ducts. In

acoustics, Astley and Eversman (1981) employed the method in duct propagation problems while Baumeister

and Kreider (1993) have applied the method to acoustic scattering problems.

The purpose of this paper is to develop and study an extension of the modal element method for scattering

from rigid bodies. The goal is to minimize the domain in which finite elements are employed. This approach is

called the modal ring method and was briefly introduced by Baumeister and Kreider (1993).

The modal ring method can effectively reduce a two-dimensional scattering problem to a one-dimensional

problem by employing a ring of nodes along the surface of the rigid scattering body. Herein, a variety of grid
configurations and parameters are explored. The method is validated by applying it to the simple case of scat-

tering from a hard circular cylinder, for which analytic solutions are easily obtained.
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NOMENCLATURE

modal amplitude of wave moving in +r direction away from origin

dimensionless circular cylinder radius

relative error

Hankel function of the first kind

wave number

mode number

number of modal coefficients used in eigenfunction expansion

dimensionless perturbation acoustic pressure

dimensionless radial coordinate

dimensionless complex acoustic perrnittivity

angle between position vector and x axis

dimensionless complex acoustic permeability

dimensionless frequency

METHOD OF ANALYSIS

This study is concerned with computing the acoustic scattering by a two-dimensional rigid body of an

impinging plane wave traveling in the +x direction. The spatial domain is divided into two subdomains, the

finite element domain, which contains the body, and the homogeneous domain, which surrounds the body and

extends to infinity. Linear triangular elements are used in the finite element

domain to calculate the pressure at the nodes. In the homogeneous domain, an eigenfunction expansion repre-

sents the acoustic pressure. The two solution forms are coupled by imposing continuity on the pressure and

velocity at the interface between the two subdomains. This coupling results in a single matrix equation in which
the eigenfunction coefficients and the pressures at the finite element nodes are calculated simultaneously, yield-

ing a global representation of the acoustic field.

GEOMETRICAL MODEL

For penetrable bodies, the internal pressure field must be known to determine the scattered field. The
modal element method (Baumeister and Kreider, 1993) uses a finite element grid inside the body to calculate



the internalpressure field. For rigid bodies, studied here, the field does not penetrate the body, so the grid can

be greatly reduced, yielding a variation of the method called the modal ring method.

In the modal ring method, the scattering body is represented by a thin ring of finite elements following the

body's contour. Figure 1 shows three possible configurations. The grid in figure l(a) consists of a single row of

boundary nodes with a central node. The grid in figure 1Co) has a ring of elements on the body's surface and a
central node, so the body is filled with elements while the grid in figure 1(c) has the same ring of elements but

excludes the central region, where the field vanishes. The rigid body is simulated numerically, through an impe-

dance mismatch induced by setting e = 1 - 1019i and la = 1 at each internal finite element node. This feature

allows greater flexibility in the numerical implementation of the method, because penetrable or coated rigid

bodies may be studied with only slight modifications to the computer code, mainly in grid generation. For pene-

trable bodies, the internal grid is more extensive, while for coated bodies, several rings in the coating region

may be needed.

GOVERNING EQUATIONS

Acoustic propagation in two-dimensional space can be modeled by the continuity, momentum, and state

linearized gas dynamic equations in the absence of flow. For harmonic pressure propagation in an inhomoge-

neous material, the following dimensionless wave equation applies:

(I)

Lf l OP] + d ( l Op_ + to2pp __O

t " ) - t,7-6 )

The harmonic time dependence e-it°t has been factored out. In analogy with electromagnetic scattering, e is the

acoustic "permittivity," ta is the acoustic "permeability" and to is the dimensionless frequency. The wave num-
ber is

(2)

At the interface between the finite element region and the analytic region, continuity is imposed on the

pressure and velocity. The radiation boundary condition at infinity is automatically satisfied by the eigenfunction

expansion introduced in the next section.

ANALYTIC SOLUTION

In the homogeneous domain, an exact eigenfunction expansion can be derived from equation (1) by

separation of variables. An incident plane wave travelling in the +x direction that strikes a symmetric two-
dimensional scatterer generates a pressure field approximated by

Mcocf"l

p __pi+ps __eikx + E
m,,O

AmH (1) (kr)cos( mO)

(3)

pi is the incident plane wave; pS is the scattered wave_ Tile-modal coefficients Am + are unknowns to be deter-

mined. Formulas to estimate the number of modes needed for convergence can be found in Baumeister and

Kreider (1993).



FINITE ELEMENT SOLUTION

The finite element domain is divided into triangular elements with unknown acoustic pressure at the nodes.

It is assumed that all material properties are constant in each element. Details on the numerical setup and solu-
tion can be found in Baumeister and Kreider (1993).

RESULTS AND COMPARISONS

The modal ring method may be implemented using various grid systems and parameter values for ring

• thickness and the number of nodes. In order to study the influence of these parameters on numerical results, the

following simple standard scattering problem is considered: a unit plane wave, incident from the left with a fre-

quency tanging from k = 0.1 to k = 100, strikes a rigid circular cylinder of dimensionless radius r = 1 oriented

with its axis normal to the propagation direction. In the homogeneous region surrounding the scatterer, z = 1
and _ = l, while within the scatterer, _ = 1-1019i and _ = 1. The number of modes Mcoef used in the eigen-

function expansion in equation (3) is determined by formulas in Baumeister and Kreider (1993, eqs. (26)
and (27)). All of the plots presented here are generated using equation (3) with the calculated Am+ values.

Number of Nodes

As the frequency of the incident wave increases, more finite element nodes are required to resolve the

increasing oscillations in both the pressure and intensity fields. The oscillations in this case are represented by

the cosine terms in equation (3), so the number of boundary nodes depends on the number of eigenfunction

modes used. Experience has shown that setting the number of boundary nodes to 12Mcoef suffices; this condi-
tion is used in the examples shown below.

Grid Systems

Grid l(a), with its single ring of boundary nodes, is attractive because it uses the least number of nodes for

a given problem. However, it directly links the boundary of the body with the center node. This inflexibility

yields poor numerical results--relative errors up to 30 percent for low frequencies. This grid should not be used

for any scattering problem.

In contrast, grids 1Co) and (c) consist of a ring of elements following the body's surface. Grid l(b) con-

tains a central node, while grid l(c) excludes the central region. When using grid l(c), the pressure gradient

along the inner element boundaries is set to zero. Numerical results for these grids are virtually identical, indi-

cating that the presence of the central node is not critical. Figure 2 shows the pressure amplitude at radius

r = 3.18 with frequency ka = 25 using grid l(b). Here, Meoef = 40 modes are required for the scattered field in

equation (3), so 480 boundary nodes are used. Figure 3 shows the pressure amplitude at radius r = 3.18 with

frequency ka = 50 using grid l(c) with 804 nodes (Meoef = 67). In both figures, the numerical results (squares)
are in excellent agreement with the analytic solutions (solid lines).

Both grids were tested with frequencies up to ka = 100 with accuracy comparable to that seen in figures 2

and 3. The plots are not included here because the high degree of oscillation in the graphs makes visual inspec-
tion difficult.
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Ring Thickn_s

The thickness of the ring of elements surrounding the body is very significant. For a cylinder of radius 1,

element thicknesses ranging from 0.05 to 0.001 were considered. Figure 4 shows results for incident frequency

k = 25. Here, Moo d = 40, so 480 boundary nodes are used. Grid l(b) is used. For element thickness 0.05
(fig. 4(a)), results are poor. For element thickness 0.01 (fig. 4Co)), results are better, but there is still some

deviation from the exact solution. Reducing the element thickness to 0.001 (fig. 4(c)) yields excellent results.

CONCLUDING REMARKS

The modal ring method for acoustic scattering from a two-dimensional rigid body is presented. The acous-

tic pressure field is represented by a f'mite element solution on a thin ring of elements on the surface of the

scattering body, and by an eigenfunction expansion outside the body. The two representations are coupled by

the continuity of pressure and velocity across the interface between the two subdomains, and are calculated

simultaneously from a single matrix equation. This matrix is highly banded because the usual two-dimensional

finite element grid is replaced by an essentially one-dimensional grid. This reduction in computational resources

is the main benefit of the modal ring method, but it may be used only when the scattering body is rigid. How-

ever, the method is applicable to problems involving very high or low frequency scattering from rigid bodies of

complicated shape. In the validation cases presented, numerical results are in excellent agreement with the cor-

responding exact solutions.

The grid system most suitable for use with the modal ring method contains a very thin ring around the

surface of the scattering body, and may or may not include a node at the body's center. If the central node is

not included, the pressure gradient along the inner element boundaries is set to zero.
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(s) Line of nodes with central node. Co)Line of elements with centraJ node.

(G)Line of elements without cent_ node.

Figure 1 ._F']nite element ring grid system.

6



13
Exact analysis ABS (p)

Numerical solutions ASS (p)

Figure 2.--Polar Plot of the total acoustic pressure around a rigid

cylinder modeled by a single line of symmetrical elements on

boundaqf with central node for configuration figure I (1o) (ka = 25.0,

a = 1, number of nodes = 961, number of elements = 1440,

Mcoef = 40, At = 0.001, r = 3.18, Io"=79.58).

Exact analysis ABS (p)

Numerical solutions ABS Lo)

Rgure 3.--Polar Plot of the total acou=tic pressure around a rigid

cylinder modeled by a single line of symmetrical elements on

boundaly for configuration figure 1(c) (ka = 50.0, a = 1, number

of nodes = 1608, number of elements = 1608, Mcoef = 67,

At = 0.001, r = 3.18, kr = 159.16).
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(a) At = 0.05.

Exact an,_is ABS Lo)
Numeric_ solutions ABS (p)

O

Co)6t = 0.01. (c] At = 0.001.

Figure 4._ of the total acoustic pressure around a solid cylinder to line element thickness At (ka = 25.0, a = 1, r = 1.5,
number of nodes = 961, number of (dements = 1440, Mcoef = 40, configuration figure I (b)).

8





Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reoorting burden for this collection of information is estirnaled to average 1..hour per r .esponse, tndudin.g the time for reviewtnQ.instru_ions, searching existing data sou.r.c_..,
gathering and main/aiRing the data needed, a_. corr_leting .andLrev.iowtng the .COlleCtionol imormatlon_ :_pno _.c_ra'nents regaro=ng this ouroen e.stlmate .orally other .as.,.,.,.,.,.,.,_...oIth_s
collection of information, including suggestions for reoucing thinsouroe.n., to wasmngton Heaoquatters _etvlces, u=rec_orate rot Jm,ormat_on uper=Jon$ _ Heports, ]Zl_ Jenerson
Davis Highway, Suite 1204, Arlington, "CA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Projecl (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

November 1993

4. TITLI_ AND SUBTITLE 5. FUNDING NUMBERS

Modal Ring Method for the Scattering of Sound

6. A'm'HOR(S)

Kenneth J. Baumeister and Kevin L. Kreider

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

WU-505--62-52

8. PERFORMING ORGANIZATION

REPORT NUMBER

E-8111

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NAS A TM- 106342

11. SUPPLEMENTARY NOTES

Prepared for the ASME Winter Annual Meeting (Session 11B), spon .sored by the American Society of Mechanical Engineers,
November 2g--December 3, 1993, New Orleans, Louisiana. Kenneth L Baumeister, NASA Lewis Research Center and Kevin L. Kreider,

The University of Akron, Department of Mathematical Sciences, Akron, Ohio 44325-4002. Responsible person, Kenneth I. Baurneister,

(216) 433-5886.
12a. DISTRIBUTION/AVAILABILITY STATEM|'NT

Unclassified - Unlimited

Subject Category 71

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The modal element method for acoustic scattering can be simplified when the scattering body is rigid. In this

simplified method, called the modal ring method, the scattering body is represented by a ring of triangular t-mite

elements forming the outer surface. The acoustic pressure is calculated at the element nodes. The pressure in the

infinite computational region surrounding the body is represented analytically by an eigenfunction expansion. The

two solution forms are coupled by the continuity of pressure and velocity on the body surface. The modal ring

method effectively reduces the two-dimensional scattering problem to a one-dimensional problem capable of

handling very high frequency scattering. In contrast to the boundary element method or the method of moments,

which perform a similar reduction in problem dimension, the model line method has the added advantage of having a

highly banded solution matrix requiring considerably less computer storage. The method shows excellent agreement

with analytic results for scattering from rigid circular cylinders over a wide frequency range (1 =< ka _-__100) in the

near and far fields.

14. SUBJECT TEI_MS

Finite elements; Eigenfunctions; Scattering; Acoustics; Waves

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

10
16. PRICE CODE

A02

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
296-102


